Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 9 de 9
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Curr Neurol Neurosci Rep ; 24(5): 141-150, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38589696

RESUMO

PURPOSE OF REVIEW: Immune-mediated necrotizing myopathy (IMNM), characterized by acute or subacute onset, severe weakness, and elevated creatine kinase levels, poses diagnostic and therapeutic challenges. This article provides a succinct overview of IMNM, including clinical features, diagnostic strategies, and treatment approaches. RECENT FINDINGS: Recent insights highlight the different clinical presentations and therapeutic options of IMNM stratified by autoantibody positivity and type. Additionally, recent findings call into question the reported link between statin use and IMNM. This review synthesizes current knowledge on IMNM, emphasizing its distinct clinical features and challenging management. The evolving understanding of IMNM underscores the need for a comprehensive diagnostic approach that utilizes a growing range of modalities. Early and aggressive immunomodulatory therapy remains pivotal. Ongoing research aims to refine diagnostic tools and therapeutic interventions for this challenging muscle disorder, underscoring the importance of advancing our understanding to enhance patient outcomes.


Assuntos
Doenças Autoimunes , Doenças Musculares , Miosite , Humanos , Músculo Esquelético , Necrose/diagnóstico , Miosite/terapia , Miosite/tratamento farmacológico , Doenças Autoimunes/diagnóstico , Doenças Autoimunes/terapia , Doenças Musculares/diagnóstico , Doenças Musculares/terapia , Autoanticorpos
2.
Ther Adv Rare Dis ; 5: 26330040241227452, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38445267

RESUMO

Background: Adult Polyglucosan Body Disease (APBD) is an ultra-rare, genetic neurodegenerative disorder caused by autosomal recessive mutations in the glycogen branching enzyme gene. Knowledge of the demographic and clinical characteristics of APBD patients and the natural history of the disease is lacking. We report here initial results from a patient-reported registry of APBD patients. Objectives: (1) Maximize the quality of the APBD Registry survey data; (2) provide an initial report on APBD disease progression and natural history using these data; and (3) specify next steps in the process for testing potential new therapies. Design: Data are from members of the APBD Research Foundation (New York), surveyed from 2014 by the Columbia APBD Patient/Family (CAP) Registry. Inclusion criteria are: disease onset at age 18+ and progressive clinical triad of peripheral neuropathy, spasticity, and neurogenic bladder. Methods: Genetic testing results were used when available. Respondents found to not have APBD in clinical records were excluded. All changes and exclusions were recorded in a database edit log. Results are reported in frequency tables, bar graphs, time plots, and heat maps. Results: The 96 respondents meeting inclusion criteria were predominantly (96.8%) White, highly educated (89.3% at least some college education), and mostly (85.1%) of Ashkenazi Jewish descent. 57.1% had at least one parent born in the United States, with at least one grandparent from Europe (excluding Russia; 75.4%), the United States (42.1%), or Russia (33.3%). 37.2% reported a family history of APBD, and 33.3% had an affected sibling. Median APBD onset age was 51 [Interquartile range (IQR) 11], and median age of diagnosis 57 (IQR 10.5). The 75 reported prior misdiagnoses were mainly peripheral neuropathy (43, 60.6%) and spinal stenosis (11, 15.1%). Conclusion: Although from a demographically constricted survey, the results provide basic clinical information for future studies to develop treatments for APBD.


A United States based patient-reported adult polyglucosan body disease registry: initial results Adult Polyglucosan Body Disease, or APBD, is an ultra-rare neurological disorder caused by mutations of the GBE1 gene. While potential therapies exist, to establish if they work we need a "natural history" study that shows the normal path of the disease. Our goal was to provide the first patient-reported natural history study of APBD. We analyzed survey data from 96 patients recruited by the APBD Research Foundation (New York), aged 18 or older, who self-reported having APBD. We maximized data quality by using results from genetic testing when these were available, and by excluding respondents if we could not review clinical records confirming they had APBD. More than 95% of our 96 patients were white. They were highly educated: 89% had at least some college education. Most (85%) were of Ashkenazi Jewish descent. More than half (57.1%) had a parent born in the United States. Many had at least one grandparent from Europe (excluding Russia) (75.4%), the United States (42.1%), or Russia (33.3%). More than a third (37%) reported a family history of APBD, and a third reported that they had a brother or a sister with a history of the disease. Their average age at APBD onset was 51, and their average age at APBD diagnosis was 57. Previous misdiagnoses were common: 75 were reported. Most were for peripheral neuropathy (60.6%) or spinal stenosis (16.7%). Although our data come from a survey of patients who are demographically similar, they provide a report on the characteristics of patients with APBD and basic information that is essential for studies to develop treatments for the disease.

3.
BMJ Case Rep ; 15(12)2022 Dec 22.
Artigo em Inglês | MEDLINE | ID: mdl-36549757

RESUMO

Fluoroquinolones are commonly used antimicrobials with multiple known adverse effects, yet overdose events are rarely reported. Here, we report a case of a previously healthy middle-aged woman who unintentionally ingested 7 g of levofloxacin in one dose. Thereafter, she presented to the emergency department with hemiparesis concerning for ischaemic stroke and was administered tissue plasminogen activator. Her brain imaging showed no ischaemic injury and her symptoms resolved within 24 hours; this is consistent with a transient ischaemic attack. Our case highlights potential adverse effects of an acute overdose of levofloxacin that has not previously been well described.


Assuntos
Isquemia Encefálica , Overdose de Drogas , Efeitos Colaterais e Reações Adversas Relacionados a Medicamentos , Acidente Vascular Cerebral Lacunar , Acidente Vascular Cerebral , Pessoa de Meia-Idade , Feminino , Humanos , Ativador de Plasminogênio Tecidual/uso terapêutico , Levofloxacino/efeitos adversos , Acidente Vascular Cerebral/tratamento farmacológico , Isquemia Encefálica/induzido quimicamente
4.
Proc Natl Acad Sci U S A ; 118(11)2021 03 16.
Artigo em Inglês | MEDLINE | ID: mdl-33836576

RESUMO

Neurotransmitter release during synaptic transmission comprises a tightly orchestrated sequence of molecular events, and Munc13-1 is a cornerstone of the fusion machinery. A forward genetic screen for defects in neurotransmitter release in Caenorhabditis elegans identified a mutation in the Munc13-1 ortholog UNC-13 that eliminated its unique and deeply conserved C-terminal module (referred to as HC2M) containing a Ca2+-insensitive C2 domain flanked by membrane-binding helices. The HC2M module could be functionally replaced in vivo by protein domains that localize to synaptic vesicles but not to the plasma membrane. HC2M is broadly conserved in other Unc13 family members and is required for efficient synaptic vesicle priming. We propose that the HC2M domain evolved as a vesicle/endosome adaptor and acquired synaptic vesicle specificity in the Unc13ABC protein family.


Assuntos
Proteínas de Caenorhabditis elegans/metabolismo , Caenorhabditis elegans/metabolismo , Proteínas de Membrana/metabolismo , Proteínas do Tecido Nervoso/metabolismo , Transmissão Sináptica , Vesículas Sinápticas/metabolismo , Sequência de Aminoácidos , Animais , Proteínas de Caenorhabditis elegans/química , Proteínas de Caenorhabditis elegans/genética , Exocitose , Proteínas de Membrana/química , Proteínas de Membrana/genética , Mutação , Proteínas do Tecido Nervoso/química , Proteínas do Tecido Nervoso/genética , Neurotransmissores/metabolismo , Domínios Proteicos , Deleção de Sequência
5.
Neuron ; 95(3): 577-590.e5, 2017 Aug 02.
Artigo em Inglês | MEDLINE | ID: mdl-28772122

RESUMO

Almost all known forms of fast chemical synaptic transmission require the synaptic hub protein Munc13. This essential protein has also been implicated in mediating several forms of use-dependent plasticity, but the mechanisms by which it controls vesicle fusion and plasticity are not well understood. Using the C. elegans Munc13 ortholog UNC-13, we show that deletion of the C2B domain, the most highly conserved domain of Munc13, enhances calcium-dependent exocytosis downstream of vesicle priming, revealing a novel autoinhibitory role for the C2B. Furthermore, C2B inhibition is relieved by calcium binding to C2B, while the neighboring C1 domain acts together with C2B to stabilize the autoinhibited state. Selective disruption of Munc13 autoinhibition profoundly impacts nervous system function in vivo. Thus, C1-C2B exerts a basal inhibition on Munc13 in the primed state, permitting calcium- and lipid-dependent control of C1-C2B to modulate synaptic strength.


Assuntos
Cálcio/metabolismo , Proteínas de Transporte/metabolismo , Transmissão Sináptica , Animais , Transporte Biológico/efeitos dos fármacos , Caenorhabditis elegans/metabolismo , Proteínas de Transporte/genética , Exocitose/efeitos dos fármacos , Exocitose/fisiologia , Fusão de Membrana/fisiologia , Proteínas de Membrana/metabolismo , Neurotransmissores/farmacologia , Transmissão Sináptica/efeitos dos fármacos , Vesículas Sinápticas/metabolismo
6.
J Clin Invest ; 127(3): 1005-1018, 2017 Mar 01.
Artigo em Inglês | MEDLINE | ID: mdl-28192369

RESUMO

Munc13 proteins are essential regulators of neurotransmitter release at nerve cell synapses. They mediate the priming step that renders synaptic vesicles fusion-competent, and their genetic elimination causes a complete block of synaptic transmission. Here we have described a patient displaying a disorder characterized by a dyskinetic movement disorder, developmental delay, and autism. Using whole-exome sequencing, we have shown that this condition is associated with a rare, de novo Pro814Leu variant in the major human Munc13 paralog UNC13A (also known as Munc13-1). Electrophysiological studies in murine neuronal cultures and functional analyses in Caenorhabditis elegans revealed that the UNC13A variant causes a distinct dominant gain of function that is characterized by increased fusion propensity of synaptic vesicles, which leads to increased initial synaptic vesicle release probability and abnormal short-term synaptic plasticity. Our study underscores the critical importance of fine-tuned presynaptic control in normal brain function. Further, it adds the neuronal Munc13 proteins and the synaptic vesicle priming process that they control to the known etiological mechanisms of psychiatric and neurological synaptopathies.


Assuntos
Proteínas de Caenorhabditis elegans/metabolismo , Caenorhabditis elegans/metabolismo , Transtornos Motores/metabolismo , Mutação de Sentido Incorreto , Proteínas do Tecido Nervoso/metabolismo , Transmissão Sináptica , Vesículas Sinápticas/metabolismo , Substituição de Aminoácidos , Animais , Caenorhabditis elegans/genética , Proteínas de Caenorhabditis elegans/genética , Linhagem Celular , Feminino , Humanos , Lactente , Masculino , Transtornos Motores/genética , Proteínas do Tecido Nervoso/genética , Plasticidade Neuronal , Neurônios/metabolismo , Vesículas Sinápticas/genética
8.
Sci Rep ; 4: 7190, 2014 Dec 02.
Artigo em Inglês | MEDLINE | ID: mdl-25448527

RESUMO

Learning and memory and the underlying cellular correlate, long-term synaptic plasticity, involve regulation by posttranslational modifications (PTMs). Here we demonstrate that conjugation with the small ubiquitin-like modifier (SUMO) is a novel PTM required for normal synaptic and cognitive functioning. Acute inhibition of SUMOylation impairs long-term potentiation (LTP) and hippocampal-dependent learning. Since Alzheimer's disease (AD) prominently features both synaptic and PTM dysregulation, we investigated SUMOylation under pathology induced by amyloid-ß (Aß), a primary neurotoxic molecule implicated in AD. We observed that SUMOylation is dysregulated in both human AD brain tissue and the Tg2576 transgenic AD mouse model. While neuronal activation normally induced upregulation of SUMOylation, this effect was impaired by Aß42 oligomers. However, supplementing SUMOylation via transduction of its conjugating enzyme, Ubc9, rescued Aß-induced deficits in LTP and hippocampal-dependent learning and memory. Our data establish SUMO as a novel regulator of LTP and hippocampal-dependent cognition and additionally implicate SUMOylation impairments in AD pathogenesis.


Assuntos
Doença de Alzheimer/metabolismo , Doença de Alzheimer/fisiopatologia , Cognição/fisiologia , Plasticidade Neuronal/fisiologia , Proteína SUMO-1/metabolismo , Idoso , Idoso de 80 Anos ou mais , Peptídeos beta-Amiloides/metabolismo , Animais , Modelos Animais de Doenças , Hipocampo/metabolismo , Hipocampo/fisiologia , Hipocampo/fisiopatologia , Humanos , Potenciação de Longa Duração/fisiologia , Masculino , Memória/fisiologia , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Transgênicos , Pessoa de Meia-Idade , Sumoilação/fisiologia
9.
Proc Natl Acad Sci U S A ; 109(29): 11776-81, 2012 Jul 17.
Artigo em Inglês | MEDLINE | ID: mdl-22753499

RESUMO

Inhibition of cytokine gene expression by the hormone-activated glucocorticoid receptor (GR) is the key component of the anti-inflammatory actions of glucocorticoids, yet the underlying molecular mechanisms remain obscure. Here we report that glucocorticoid repression of cytokine genes in primary macrophages is mediated by GR-interacting protein (GRIP)1, a transcriptional coregulator of the p160 family, which is recruited to the p65-occupied genomic NFκB-binding sites in conjunction with liganded GR. We created a mouse strain enabling a conditional hematopoietic cell-restricted deletion of GRIP1 in adult animals. In this model, GRIP1 depletion in macrophages attenuated in a dose-dependent manner repression of NFκB target genes by GR irrespective of the upstream Toll-like receptor pathway responsible for their activation. Furthermore, genome-wide transcriptome analysis revealed a broad derepression of lipopolysaccharide (LPS)-induced glucocorticoid-sensitive targets in GRIP1-depleted macrophages without affecting their activation by LPS. Consistently, conditional GRIP1-deficient mice were sensitized, relative to the wild type, to a systemic inflammatory challenge developing characteristic signs of LPS-induced shock. Thus, by serving as a GR corepressor, GRIP1 facilitates the anti-inflammatory effects of glucocorticoids in vivo.


Assuntos
Proteínas Adaptadoras de Transdução de Sinal/imunologia , Anti-Inflamatórios/imunologia , Citocinas/antagonistas & inibidores , Regulação da Expressão Gênica/imunologia , Glucocorticoides/imunologia , Proteínas do Tecido Nervoso/imunologia , Receptores de Glucocorticoides/imunologia , Proteínas Adaptadoras de Transdução de Sinal/deficiência , Proteínas Adaptadoras de Transdução de Sinal/genética , Animais , Células Cultivadas , Imunoprecipitação da Cromatina , Perfilação da Expressão Gênica , Immunoblotting , Macrófagos/imunologia , Camundongos , Camundongos Transgênicos , Proteínas do Tecido Nervoso/deficiência , Proteínas do Tecido Nervoso/genética , Reação em Cadeia da Polimerase em Tempo Real , Análise de Sequência de RNA , Análise de Sobrevida , Fator de Transcrição RelA/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...